A.D.M. COLLEGE FOR WOMEN

(AUTONOMOUS)

Nationally Accredited with "A" Grade by NAAC - 3rd Cycle (Affiliated to Bharathidasan University, Thiruchirappalli) No.1, College Road, Velippalayam, Nagapattinam – 611 001, Tamil Nadu, India

DEPARTMENT OF GEOLOGY (For the candidates admitted from the academic year 2021-2022)

B.Sc., GEOLOGY

SYLLABUS

2021-2024

A.D.M COLLEGE FOR WOMEN (AUTONOMOUS), Nagapattinam

UG Programme - B. Sc Geology

(For the candidates admitted from 2021 – 2022 onwards)

Bloom's Taxonomy Based Assessment Pattern

Knowledge Level

K1 –	K2 – Understanding	K3 – Applying	K4 –	K5 –	K6 – Creating
Recalling			Analyzing	Evaluating	

1. Part I, II and III

Theory (External + Internal = 75 + 25 = 100 marks)

External/Internal							
Knowledge	Section	Marks	Hrs.	Total	Passing		
Level	Section	1,111,110	1115	1000	Mark		
K1-K3	A (Answer all)	$10 \times 2 = 20$					
K3-K6	B (Either or pattern)	$5 \times 5 = 25$	3	75	30		
K3-K6	C (Answer 3 out of 5)	$3 \times 10 = 30$					

DEPARTMENT OF GEOLOGY (For the candidates admitted from the academic year 2020-2021) B.Sc., GEOLOGY

Programme Educational Objectives (PEO):

PEO 1:	To study about surface geologic process and their impact on development of
	landforms, and ability to identify and interpret landform development.
PEO 2:	Students will use maps (topographic and geologic) to estimate distances, visualise
	landforms, and locate/identify geographic and geologic features.
PEO 3:	Students will identify common minerals in hand samples and in field exposures of rock
	using visual clues and simple tests.
PEO 4:	Students will identify common minerals in hand samples and in field exposures using
	observations of mineral composition and textures.
PEO 5:	To understand public issues in the geological sciences and be ready and able to
	contribute to their resolution.

Programme Outcomes (POs): On completion of the course the learner will be able

PO 1:	Gain a better understanding of the Plants, Moons and other objects of our solar system in addition to their distribution and dynamical relationship.
PO 2:	Understand elastic and viscous strain in role behaviour, the effects of temperature, pressure and strain rate on rock strength and the mechanism of rock deformation.
PO 3:	Recognize and quantify the physical and optical properties of minerals \Box Student would understand the Indian Stratigraphy and its age related problems.
PO 4:	Demonstrate the difference between minerals and ore minerals. Explain the formation of placers and other minerals. Explain the origin of igneous rocks and structures.
PO 5:	Students understand the field basic equipment handling and requirements. Understand the compass its uses rock and mineral direction. Understand the student using base map latitude and longitude direction. Gains a better understand the field writing materials, field sketches and drawings.

Programme Specific Outcomes (PSO):

On completion of the course the learner will be able

PSO 1:	Demonstrate fundamental knowledge of: the physical and chemical properties of the
	lithosphere and hydrosphere (minerals, rocks, soils and water).
PSO 2:	Geological time and Earth history; and crustal materials and dynamics in the context
	of plate tectonics theory
PSO 3:	Demonstrate skills in: mineral and rock soil identification; interpretation of
	topographic and geologic maps; and interpreting and evaluating geological data,
	hypothesis and ideas.
PSO 4:	Gain an understanding of the social relevance of earth systems.
PSO 5:	Effectively communicate this knowledge and these skills using written and/or oral
	methods.

DEPARTMETN OF GEOLOGY COURSE STRUCTURE OF THE UG PROGRAMME- B. Sc GEOLOGY

Part	Title of the part	No. of Courses	Hours	Credit
Ι	Language Course	4	24	12
II	English Language Course	4	24	12
	Core Course	13	72	65
III	Allied Course	6	28	18
	Major Based Elective	3	15	15
IV	Skill Based Elective	3	6	6
	Non Major Elective	2	4	4
	Extension Activities	0	0	1
	Value Education	1	2	2
	Environmental Studies	1	2	2
V	Soft Skill Development	1	2	2
	Gender Studies	1	1	1
	Total	39	180	140

Passing Minimum

A candidate shall be declared to have passed in each course if she secures not less than 40% marks out of 75 marks (i.e., 30 marks) in the End Semester Examination (SE) and 40% out of 25 marks (i.e., 10 marks) in the Continuous Internal Assessment. (CIA).

A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS), NAGAPATTINAM DEPARTMENT OF GEOLOGY B.Sc., GEOLOGY

Course Structure under CBCS (For the candidates admitted from the academic year 2021-2022 onwards)

				INS. CREDIT		DIT EXAM MARKS		TOTAL	
SEM.	PART	COURSE CODE	COURSE	HRS	CILLDII	HOURS	CIA	SE	MARKS
	Ι	Language Course I (LC)	Tamil-I	6	3	3	25	75	100
	II	Language English Course I (ELC)	English-I	6	3	3	25	75	100
		Core Course I (CC)	The Dynamic Earth	6	6	3	25	75	100
Ι	III	Core Practical I (CP)	Structural Geology and Surveying	3	-	-	-	-	-
		First Allied Course I (AC)	Mathematics I	4	3	3	25	75	100
		First Allied Course I (AC)	Chemistry I	3	-	-	-	-	-
	IV	Value Education	Value Education	2	2	3	25	75	100
			Total	30	17	-	-	-	500
	Ι	Language Course II (LC)	Tamil-II	6	3	3	25	75	100
Π	II	Language English Course II (ELC)	English-II	6	3	3	25	75	100
		Core Course II (CC)	Structural Geology	6	6	3	25	75	100
	III	Core Practical I (CP)	Structural Geology and Surveying	3	3	3	40	60	100
		First Allied Course II (AC)	Mathematics II	4	3	3	25	75	100
		Second Allied Course II (AC)	Chemistry II	3	3	3	25	75	100
	IV	Environmental Studies	Environmental Studies	2	2	3	25	75	100
			Total	30	23	-	-	-	500

SEM	DADT	COUDSE	TITL F	INST	CDEDIT	EXAM	MA	RKS	TOTAL
SEIVI	PAKI	COURSE	IIILE	WEEK	CKEDII	S	CIA	SE	MARKS
	Ι	Language Course III (LC)	Tamil-III	6	3	3	25	75	100
	II	Language English Course III (ELC)	English-III	6	3	3	25	75	100
III		Core Course III (CC)	Physical Geology	5	5	3	25	75	100
	III	Core Practical II (CP)	Paleontology and Crystallography	4	-	-	-	-	-
		Second Allied Course I (AC)	Physics I – Lab	5	3	3	25	75	100
		Second Allied Course II (AC)	Physics II	2	-	-	-	-	-
	IV	Non Major Elective I (NME)	Scope of Geology	2	2	3	25	75	100
			Total	30	16	-	-	-	500
	Ι	Language Course IV (LC)	Tamil-IV	6	3	3	25	75	100
	II	Language English Course IV (ELC)	English-IV	6	3	3	25	75	100
		Core Course IV (CC)	Paleontology and Crystallography	5	5	3	25	75	100
IV	III	Core Practical II (CP)	Paleontology and Crystallography	2	4	3	40	60	100
		Second Allied Course I (AC)	Physics II (Lab)	3	3	3	25	75	100
		Second Allied Course II (AC)	Physics III	4	3	3	25	75	100
	IV	Skill Based Elective I (SBE)	Disaster Management	2	2	3	25	75	100
	V	Non Major Elective II (NME)	Geological of TamilNadu	2	2	3	25	75	100
			Total	30	25	-	-	-	800

				INST HOURS/ CREDIT		EXAM	MARKS		TOTAL
SEM	PART	COURSE	TITLE	HOURS/ WEEK	CREDIT	HOUR S	CIA	SE	MARKS
V		Core Course V (CC)	Stratigraphy	5	5	3	25	75	100
		Core Course VI (CC)	Mineralogy	5	5	3	25	75	100
	III	Core Practical III (CP)	Mineralogy and Applied Geology	4	3	3	40	60	100
		Major Based Elective I (MBE)	Marine Geology	5	5	3	25	75	100
		Major Based Elective II (MBE)	Aerial Photography, Cartography and GIS	5	5	3	25	75	100
		Skill Based Elective II (SBE)	Basic Hydrology	2	2	3	25	75	100
	IV.	Skill Based Elective III (SBE)	Natural Hazards Remote sensing and GIS	2	2	3	25	75	100
	IV	Soft Skills Development	Soft Skills Development	2	2	3	25	75	100
			Total	30	29	-	-	-	800
		Core Course VII (CC)	Igneous Petrology	6	6	3	25	75	100
		Core Course VIII (CC)	Sedimentary Petrology and Metamorphic Petrology	6	6	3	25	75	100
	TT	Core Course IX (CC)	Economic Geology	6	6	3	25	75	100
VI	111	Core Practical IV (CP)	Petrology and Economic Geology	6	5	3	40	60	100
		Major Based Elective III (MBE)	Exploration Geophysics	5	5	3	25	75	100
	V	Extension Activities (EA)	Extension Activities	-	1	-	-	-	-
	·	Gender Studies (GS)	Gender Studies	1	1	3	25	75	100
			Total	30	30	-	-	-	600
			Grand Total	180	140				3900

Allied I	Allied II
Mathematics or Chemistry	Physics

Semester-I / Core Course-I(CC)	The Dynamic Earth	Course Code: GUA
Instruction Hours : 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding			
	K3 -Applying			
	K4 - Analyzing			
	K5 - Evaluating			
	K6 - Creating			
Course	• Introduction of the geological process that are dynamically involved	ved		
Objectives	in the formation of the planet Earth.			
	• To study the evolution of solar system and age of the Earth.			
	• Describe the Earth's interior, including the structure and composition	on.		
	• Clearly describe plate tectonics in general term.			
	• To learn about the endogenic process like earthquake, volcanoes	and orogenic		
	activity.			
UNIT	CONTENT	HOURS		
UNIT I	DEFINITION OF GEOLOGY	(18 Hrs)		
	Definition of Geology – Branches of Geology –			
	Applied Geology – Geology in the service of man. The Solar system:-			
	The Planets – Meteorites – Asteroids – Satellites – Comets; Evolution of			
	the Solar system – Nebular hypothesis – Planetesimal hypothesis – Tidal			
	hypothesis – Von Weiszacker's hypothesis and Dust Cloud hypothesis.			
	The age of the earth – sedimentation method - salinity method – Kelvin's			
	rate of cooling method – Radiometric methods: Uranium – lead, Thorium			
	– Lead and Potassium – Argon methods – A note on C14 methods.			
UNIT II	EARTHQUAKES	(18 Hrs)		
	Definition – causes and effects – Focus and Epicenter –			
	Magnitude and Intensity – Properties and propagation of seismic waves –			
	Seismograph and Seismogram – Distribution of Earthquakes – Prediction			
	of Earthquakes - Tsunami - Earthquakes in India. Detailed study of the			
	structure and composition of Earth's interior.			
UNIT III	VOLCANOES	(18 Hrs)		
	Definition – types – phases – solid, liquids and gaseous			
	products, distribution – topographic forms. Causes of volcanism – effects			
	of volcanic activity - prediction of volcanoes. Mass movements -			
	definition - classification - slow movements: soil creep, rock creep and			
	soliflucation. Rapid movements: earth flows, rock falls and landslides.			
	Causes and remedial measures			
UNIT IV	OCEANS	(18 Hrs)		
	Distribution of continents and oceans - Characters of			
	continents and Oceans – Continental margin – Ocean basin – Continental			
	drift: Wegner and Taylor hypothesis - Sea floor spreading - Concept of			
	plate tectonics - Different kinds of plate margins - Evidences in favour			
	and against the concepts of Continental Drift and Plate Tectonics - Mid			
	Oceanic Ridges – Submarine trenches and Transform faults.			
1				

UNIT V	MOUNTAINS	(18 Hrs)
	Classification - life cycle of mountains - origin of	
	mountains - geosynclines - Stille's, Kay's Strahler's and Schuchert's	
	classification of geosynclines - characters and distribution of	
	geosynclines - types of pleateaus and plains. Isostasy Prat's and Airy's	
	hypothesis – causes, effects and evidences of sea level changes.	
UNIT VI	The Solar system :- The Planets - Meteorites - Asteroids -	(18 Hrs)
	Satellites - Comets; Evolution of the Solar system - Nebular hypothesis -	
	Planetesimal hypothesis - Tidal hypothesis - Von Weiszacker's	
	hypothesis and Dust Cloud hypothesis. Isostasy Prat's and Airy's	
	hypothesis – causes, effects and evidences of sea level changes.	

- 1. Radhakrishanan V., General Geology., V.V.P. Press, 1996.
- 2. Mahapatra, G.B., A text book of Geology, CBS, Delhi, 2015.
- 3. Arthur Holmes, Principles of Physical Geology, Thomas Nelson & sons, London. 1993.
- 4. Philip G. Worcester A textbook of geomorphology, D. Van Nostrand Co., London 1948.

Reference Books:

- 1. W. D. Thornbury, A text book of geomorphology, D. Van Nostrand co., London, 2004.
- 2. A.L. Bloom, General Geology, V.V.P.Press, 1978.
- 3. L.D. Leet & Judson Physical Geology, Prentice Hall, India, 1958.

Web resources:

- 1. <u>www.uj.ac.za/library/bindery</u>
- 2. https:llen.wikisource.org/wiki/portal:geology

Course Outcomes

On completion of the course, students should be able to

CO 1: Gain a better understanding of the Planets, Moons and other objects of our solar system in addition to their distribution and dynamical relationships.

CO 2: Understanding the geological origins of especially important natural hazards including Earthquakes, Tsunami, Volcanic eruptions and Landslides.

CO 3: Understand platetectonics and its central role as the unifying theory of geology.

CO 4: Articulate the relationship between Volcanoes, Earthquakes, Mountain belts and Tectonic plate boundaries.

CO 5: Understand the nature of the ocean floor.

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	М	Μ	S	S	S	М	S	М
CO 2	S	S	М	Μ	S	М	S	М	S	М
CO 3	М	S	М	М	S	М	S	М	S	М
CO 4	S	S	М	М	S	М	S	М	S	М
CO 5	S	Μ	М	Μ	S	S	S	Μ	S	Μ

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-I & Practical-I	II/ Core	Structural Geology and Surveying – Practical	Course Code: G	GUBY
Instruction H	ours: 6	Credits: 3	Exam Hours: 3	
Internal Mar	ks: 40	External Marks: 60	Total Marks: 1	00
Course	• To know	about the Exercises to predict the trends of the	outcrop of horizo	ntal vertical
Objectives	• TO KHOW	ad hads with respect to tangementy.	outerop of nonzo	intai, verticai
Objectives				
	• Reading of	of solid fold and fault, maps construction and pr	oblems relating to	true dip and
	apparent of	lip.		
	• To read the	e marginal in formations of toposheets.		
	To becom	e familiar with geological signs and symbols.		
	• To learn t	he practical aspects of survey instruments.		
UNIT		CONTENT		HOURS
	STRUCTUR	AL GEOLOGY		(18 Hrs)
	С	ontour maps and their interpretation. Exercises	to predict trends	
	of the outcrop	of Horizontal, vertical anticline beds with respe	ect to topography	
	– reading of s	olid conformable maps – deciphering dip and str	ike of outcrops –	
	construction	of map with three points over a bedding	plane are given	
	construction of	of vertical sections-order of super position – ver	tical thickness of	
	formations.			
		Reading of solid fold and fault maps constru	iction of vertical	(18 Hrs)
	sections – De	termination of throw of vertical faults. Reading of	of unconformable	
	solid maps –	construction of sections. Reading of solid map	os of areas when	
	more than on	e structure is involved – determination of ages	of structures and	
	intrusions –	narrate geological history – problems relating	to true dip and	
	apparent dip.	Determination of vertical and true thickness by c	alculations.	
		Cartographic appreciation of Survey of India (S	OI) Topographic	(18 Hrs)
	sheets: Descr	ption of features in SOI's toposheet: Extra ma	rginal, marginal,	
	intramarginal	information, major conventional signs and symb	ols, physical and	
	socio-cultural	features.		
	SURVEYING	3		(18 Hrs)
	C	hain Survey – prismatic compass survey – plar	ne table survey –	
	leveling Cline	ometers Compass and Brunton Compass:- to t	find out dip and	
	strike of the b	eds . GPS:- Fundamentals and applications.	_	
		**		

Course Outcomes

On completion of the course students should be able to

CO 1: Read geologic maps and solve simple map problems using strike lines and cross sections for areas showing dipping strata, unconformities, faults and folds.

CO 2: Establish the basic structure, and the geological history, of a region from its geological maps.

- CO 3: Survey of topographic features.
- CO 4: Interpret the geologic structure from a geologic maps.
- CO 5: Measure the attitude of beds in the field.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

00	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	М	S	S	М	S	S	S	М
CO 2	М	S	М	S	S	М	S	S	S	М
CO 3	S	S	S	S	S	М	S	S	S	М
CO 4	S	S	S	S	S	М	S	S	S	М
CO 5	S	S	S	S	S	Μ	S	Μ	S	Μ

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-II/ Core Course-II	Structural Geology	Course Code: GUC
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1 -Recalling	
Level	K2 -Understanding	
	K3 -Applying	
	K4 - Analyzing	
	K5 - Evaluating	
	K6 - Creating	
Course	• Understandings of the structure accommodate contractional and	d extensional
Objectives	deformation of the Earth's lithosphere.	
	• Describe the types of geological structures, how its form, how we	e can identify
	and describe them.	
	• To study the structure of igneous and sedimentary rocks.	
	• To recognize various geological structures in field.	
	To know the preparation of geologic reports	
	• To know the preparation of geologic reports.	
UNIT	CONTENT	HOURS
UNIT I	Scope and aim of structural geology – Methods of	(18 Hrs)
	representing physiographic features – contours – Topographic and	
	Geologic maps, their preparation and uses. Physical properties of rocks:	
	Deformation – brittleness, plastic and elastic properties. Beds and their	
	attitudes Din and Strike trends of outgron Bule of V of outgrons	
	Palation between true and apparent ding. Width of outgrons. True	
	Thiskness vertical thiskness and their mutual relations	
	Thickness, vertical unckness and their mutual relations.	
UNITI	Primary and secondary structures – primary structures of	(18 Hrs)
	extrusive and intrusive igneous rocks- primary structures of	
	sedimentary rocks. Plutons - concordant and discordant plutons -	
	dyke, sill, phacolith, lopolith, batholiths, ring dykes and cone sheets –	
	brief study of salt domes.	
UNIT III	Folds	(18 Hrs)
	classification descriptive study of different types of folds recognition	
	of folds in the field and on man Unconformities definition types	
	of folds in the field and off hap. Oncomorning – definition – types –	
	significance – recognition in the field on map – over tap and off tap; inner 10^{-4}	
	and Outlier.	(10 33
UNIT IV	Faults – definition – terminology – genetic and geometric	(18 Hrs)
	classification and description - recognition of faults in the field and on the	
	map – distinction between faults and unconformities – a short account of	
	rift valleys. Joints – definition – geometric and genetic – classification –	
	descriptive study – applications of joints.	
	r r r r r r r r r r r r r r r r r r r	

UNIT V	Foliation – Primary and secondary foliations; Cleavage and Schistosity – Types and Origin of Rock Cleavages. Lineation – Kinds and Origin of lineation; Mechanism and Uses of Clinometer and Brunton compass. Preparation of geological reports.	(18 Hrs)
UNIT VI	Width of outcrops, True Thickness, vertical thickness and their mutual relations. Joints – definition – geometric and genetic – classification – descriptive study – applications of joints. Mechanism and Uses of Clinometer and Brunton compass. Preparation of geological reports.	(18 Hrs)

- 1. M.P. Billings, Structural Geology: Prentice Hall, Englewood Clifts, U.S.A, 2017.
- 2. C.M. Novin, Principles of structural Geology John Willey, New York, 1953.
- 3. De Sitter, Structural Geology, McGraw Hill, New York, 1956.
- 4. Gokhale, N.W., Theory of Structural Geology. CBS Publishers, 2013.

Reference books:

- 1. E.W. Spencer, An Introduction to structural Geology: Mc Graw, Hill, New York, 1977.
- 2. Park, P.G., Fundamentals of structural Geology, John Willey & sons, Canada, 1994.

Web resources:

- 1. <u>http://www.uh.edul/jbutler/physical/physical.html.</u>
- 2. <u>www.geologyin.com</u>.
- 3. <u>www.geology.com</u>.

Course Outcomes

On completion of the course students should be able to

CO 1: Understand the concepts of stress and force, normal and shear stresses and hydrostatic stresses.

CO 2: Understand elastic and viscous strain in role behavior, the effects of temperature, pressure and strain rate on rock strength and the mechanism of rock deformation.

CO 3: Know the classification of fold, joints and fault systems, the terminology used to describe them.

CO 4: Know the types of foliation and lineation, their origin, and their relationship to folding.

CO 5: Determining the same of fault movement from structures associated with faults.

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	Μ	S	Μ	S	S	М	S	S	S	М
CO 2	Μ	S	М	S	S	М	S	S	S	М
CO 3	S	S	S	S	S	М	S	S	S	М
CO 4	S	S	S	S	S	М	S	S	S	М
CO 5	S	S	S	S	S	М	S	М	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M-Moderately Correlated

W – Weakly Correlated

Semester-III/ Core Course- III	PHYSICAL GEOLOGY	Course Code: BGD
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1 -Recalling							
Level	K2 -Understanding							
	K3 -Applying							
	K4 - Analyzing							
	K5 - Evaluating							
	K6 - Creating							
Course	• Understanding the physical and chemical properties of the lithe	osphere and						
Objectives	atmosphere.							
	• To compare and contrast weathering among different rock types a	and different						
	environments.							
	• To explain the various parts of hydrologic cycle including the ir	nteraction of						
	surface and groundwater with the solid earth.							
	• To describe and interpret surficial deposits and landforms.							
	• To understand the basic fundamentals of tsunami.							
UNIT	CONTENT	HOURS						
UNIT I	Weathering of Rocks – Environment of weathering –	(15 Hrs)						
	weathering processes, chemical and mechanical weathering – Rates of							
	weathering – kinds and products of weathering, soils – weather &							
	climate – Role of weathering in Geologic cycle. Economic importance							
	of weathering. Atmosphere – Its composition and zones. Movements of							
	atmosphere – wind – Geological actions of wind- sand dunes and their							
	types – loses – arid cycle of erosion – characteristics of deserts							
LINIT II	Running water _ source and surface flow _ erosion	(15 Hrs)						
	transportation and denosition – land reforms resulting from erosion and	(13 1113)						
	denosition valley development drainage patterns fluxial evalu							
	position – valley development – drainage patterns – fluvial cycle							
	(youth maturity and old age) – interruptions to the normal cycle – stream							
	rejuvenation – river capture.							
UNIT III	Underground water – sources – water table – zone of	(15 Hrs)						
	saturation – springs and wells – artesian wells – geysers – spring							
	deposits – aquifer – geological work of ground water – solution – Karst							
	topography – development of Karst features – characteristics of Karst							
	regions – origin of Limestone. Caverns – artesian belts of Tamilnadu.							
UNIT IV	Glaciers – origin and types of glaciers – movement of	(15 Hrs)						
	glaciers - transportation and deposition - glacio fluvial deposits -							
	landforms produced by glaciers - short account of Ice ages. Lakes -							
	classification – types of lakes – lake deposits.							
UNIT V	Seas and Oceans – waves tides and currents – sea as a	(15 Hrs)						
	geological agent - classification of shore line - shore line types -							

	description of continental margin - continental - shelf - continental							
	slope - ocean basin - submarine canyons - sea mount, guyots mid -							
	oceanic ridges – ocean deposits – coral reef: their types and origin;							
	tsunamis – distribution and origin.							
UNIT VI	Movements of atmosphere – wind – Geological actions	(15 Hrs)						
	of wind- sand dunes and their types - loses - arid cycle of erosion -							
	characteristics of deserts - Karst topography - development of Karst							
	features - characteristics of Karst regions - origin of Limestone.							
	Caverns – artesian belts of Tamilnadu.							

- 1. Philip G.Worcester : A text book of Geomorphology D. Nostrandcomp Inc. New York.
- 2. Thornbury, W.D., (2004) Principles of Geomorphology. II edition. Wiley Eastern Ltd. New Delhi.

Reference books

- D.Leet & Shelton Judson: Physical Geology prentice Hall, Internation Inc. Englewood, Cliff, U.S.A.
- 2. Arthur Holms : Principles physical Geology Thomos Nelson & sons, London
- William J, Miller: An introduction to physical Geology, D. Van Nostrand Company, Inc New York
- 4. Radhakrishnan.V, 1996: General Geology, VVP, Tuticorin.

Web resources:

- 1. http://www.uh.edul/jbutler/physical/physical.html.
- 2. <u>www.geologyin.com</u>.
- 3. <u>www.geology.com.</u>

Course Outcomes:

On completion of the course students should be able to

- CO 1: Understand the concepts of weathering.
- CO 2: Understand the process and features formed due to running water
- CO 3: Know the sources of groundwater and its features.
- CO 4: Know the weathering process of glaciers and ice age.
- CO 5: Determining the ocean features and tsunami.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

00	РО					PSO				
co	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	М	S	S	М	S	S	S	М
CO 2	Μ	S	М	S	S	М	S	S	S	М
CO 3	S	S	S	S	S	М	S	S	S	М
CO 4	S	S	S	S	S	М	S	S	S	М
CO 5	S	S	S	S	S	М	S	М	S	М

- **S** Strongly Correlated
- M Moderately Correlated
- W Weakly Correlated
- N No Correlation

Semester-III & IV/ Core Practical-II	PALEONTOLOGY AND CRYSTALLOGRAPHY - PRACTICAL	Course Code: GUEY
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks: 40	External Marks: 60	Total Marks: 100

Level K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
K4 - Analyzing K5 - Evaluating K6 - Creating
K5 - Evaluating K6 - Creating
Course To identify the different types of fossils
Objectives To know the evolutionary period of fossils
• To know the evolutionally period of tossils.
• To identify some of the imploint photogram characteristics of fossils.
• To understand the crystal structure.
• I o learn the twinning of crystals.
UNIT CONTENT HOURS
PALAEONTOLOGY (18 Hrs)
Megascopic identification and description of the following
fossils:- Corals: Calceola, Zaphrentis, Favosites, Halysites,; Brachiopoda:
Spirifer, Productus, Terebratula, Rhynconella, Atrypa, Athyris, Orthis,
Echinodermata: Pentrimites, Cidaris, Hemicidaris, Micraster, Holaster,
Hemiaster, Stygmatophygus, Mollusca: Pelecypoda: - Arca, Cardium,
Meretrix, Cardita, Pecten, Trigonia, Megaladon, Pholodomya, Gryphea,
Exogyra, Ostrea, Inoceramus, Alectryonia. Gasteropoda:- Natica, Turbo,
Trochus, Turritella, Cerethium, Conus, Voluta, Murex, Fusus, Physa,
Bellerophon. Cephalopoda:- Nautilus, Goniatites, Ceratites, Acanthoceras,
Scholenbachia, Perisphinctes, Hamites, Scaphites, Baculites, Turrilites and
Belemnites, Arthropoda: Trilobita:- Paradoxides, Calymene, Phacops.
Trinucleus, Graptolites: - Phyllograptus, Tetragraptus, Didymograptus,
Diplograptus, Monograptus, Plant fossils:- Glossopteris, Gangamopteris,
Ptillophyllum, Lepidodendron, Sigillaria and Calamites
II (18 Hrs)
Lagena, Nodosaria, Textularia, Operculina, Elphidium, Ammonia.
III (18 Hrs)
DIAGRAMS
Paradoxides, Pentremites, Trigonia, Arca, Meretrix, Murex,
Turritella, Nautilus, Spirifer.

IV	CRYSTAL MODELS	(18 Hrs)
	Identification and description of the following crystal models:	
	Galena, Garnet, Fluorite, Pyrite, Tetrahedrite, Boracite, Sphalerite, Cuprite,	
	Zircon, Cassiterite, Rutile, Octahedrite, Apophyllite, Vesuvianite,	
	Scheelite, Meonite, Wulfenite, Chalcopyrite, Beryl, Zincite, Apatite,	
	Calcite, Haematite, Dolomite, Corundum, Tourmaline, Phenacite, Dioptase,	
	Quartz, Olivine, Topaz, Barite, Andalusite, Cordierite, Sulphur, Staurolite,	
	Hypersthene, Calamine, Struvite, Epsomite, Gypsum, Orthoclase, Augite,	
	Hornblende, Epidote, Sphene, Axinite, Albite, Kyanite and Rhodonite.	
V	SIMPLE TWIN MODELS	(18 Hrs)
	Galena, Fluorite, Pyrite, Rutile, Calcite, Quartz, Staurolite,	
	Gypsum, Augite, Orthoclase, Albite.	

Course Outcome:

On completion of the course students should be able to

- CO 1: Find, collect, prepares, study and exhibit fossils.
- CO 2: Collect and analyze geologic materials in field.
- CO 3: Determine the environment of the earth during the geologic past.
- CO 4: Interpret the miller indices of crystals.
- CO 5: Recognize crystallographic panes and directions.

CO		PO	PSO							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO
CO 1	S	S	S	S	S	S	S	S	S	М
CO 2	М	М	М	М	S	S	S	S	М	Μ

S

S

S

Μ

S

Μ

S

S

S

S

S

S

S

S

S

Μ

S

S

Μ

Μ

Μ

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S - Strongly Correlated

Μ

S

S

CO 3

CO 4

CO 5

М

S

S

M - Moderately Correlated

S

S

S

- W-Weakly Correlated
- N No Correlation

Semester-III /NME-I	Scope of Geology	Non Major Elective: NME I
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating	
Course Objectives	 To study the various processes of physical agents such as glaciers and sea waves. To study of the crystallography is not much importa engineering, but to recognize the minerals the study of crysta necessary. It deals with the study of structures found in rocks. It is als tectonic geology or simply tectonics. The study of fossils and the ancient remains of plants and referred to as fossils of stratified rocks and their correlation. To know and understand about the distribution and abundanc water resources, relationship of water to engineering proper and geological features. 	wind, water, ant to civil allography is so known as animals are ce and threat to rties and rocks
UNIT	CONTENT	HOURS
UNIT I	Wind – brief study of land forms resulting from erosion and deposition. Running water erosion, transportation and deposition. Glaciers – origin and types of glaciers. Seas and Oceans – waves, tides and currents.	(5 Hrs)
UNIT II	Definition of crystal – morphological characters of crystal – faces – forms – edges solid angles – Interfacial angle. Definitions of Mineral – Mineraloid, Ore and Gangue. Brief study of Physical Properties of Minerals.	(5 Hrs)
UNIT III	Scope and aim of Structural Geology – Geometry and mechanics of development of folds, fault, foliations and lineations. General classification of the rocks into and a comparative study of the characteristics of Igneous, Sedimentary and Metamorphic rocks.	(5 Hrs)
UNIT IV	Definition of Palaeontology – Geological Time Scale. Index fossil. Uses of fossils, discussion on importance of fossil in stratigraphic record.	(5 Hrs)

UNIT V	Role of geology in Engineering and properties of rocks.	(5 Hrs)
	Origin of water: meteoric, juvenile, magmatic and sea waters,	
	Hydrologic cycle – precipitation, runoff, infiltration and evapo	
	transpiration – Hydrographs.	

- 1. Thornbury, W.D., (2004) Principles of Geomorphology. II edition. Wiley Eastern Ltd. New Delhi.
- 2. Dana, F.S. (1955) : A text book of mineralogy Asia Publishing House -Willey.
- 3. Krishnan M.S. (2003) Geology of India and Burma, 6th Edition, CBS.
- 4. Karanth, K.R. (1998), Groundwater Management, S.R. Technico Book house, Ashok Raj path, patna-6.

Reference books:

- 1. Arthur Holms: Principles physical Geology Thomos Nelson & sons, London.
- 2. Walhstrom, E.F.1960 Optical crystallography John Wiley.
- 3. Moore, R.C., Laliker, C.G.&Fishcher, A.G.: Invertebrate Fossils, Harper brothers
- 4. Gregory, J.W. and Barret B.H General stratigraphy mathuen.

Course Outcomes

On completion of the course students should be able to

CO 1: Understand the process and features formed due to running water and process of glaciers and ice age.

- CO 2: Understand the concepts origin of crystal forms and faces.
- CO 3: Recognize and quantify the physical and optical properties of minerals.
- CO 4: Student would understand the Indian Stratigraphy and its age related problems.
- CO 5: Understand the components of hydrologic cycle.

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	Μ	М	М	S	S	S	S	М
CO 2	S	S	Μ	М	М	S	S	S	М	М
CO 3	S	S	S	S	S	S	S	S	М	М
CO 4	S	S	S	М	S	S	S	S	S	М
CO 5	S	S	S	М	М	S	S	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-IV / Course Code – IV	Palaeontology and Crystallography	Course Code: BGF
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level Course Objectives	 K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating Understanding the age of the earth through the study of fossils. To compare the evolution of life through geologic times. To understand the palaeoclimate and palaeoenvironment conditions 	
	• To describe the morphology of crystals.	
UNIT	To understand the basic fundamentals of different types of crystal sy	HOUPS
	CONTENT Definition of Delever (also and for all and the	
UNIT I	Definition of Palaeontology – Definition of fossils – nature	(15 Hrs)
	and modes of preservation of fossils: Body fossils and trace fossils; Body	
	tossils – Petrifaction, permineralisation, carbonisation, recrystallisation,	
	silicification; trace fossils – mould, casts, tracks, trails, borings. Uses of	
	fossils in – stratigraphy – palaeoclimate – palaeogeography – palaeolife –	
	evolution and migration of life forms – economic geology. Life through	
	ages. Phylum Arthropoda:- Class - Trilobita - General morphology -	
	classification – geological history and stratigraphic importance.	
	Subphylum Hemichordata – class Graptozoa: order Graptoloidea –	
	general morphology, classification, geological history and stratigraphic	
	importance.	
UNIT II	Phylum Coelentrata – class Anthozoa – classification –-	(15 Hrs)
	tabulate corals - Rugose corals. General morphology geological	
	distribution – stratigraphic importance. Phylum Mollusca: Class	
	Pelecypoda - General characters - dentition, classification and geological	
	history. Class Gasteropoda:- General morphology, shell forms - types of	
	coiling – dextral and sinistral, perforate and imperforate-classification and	
	geological history. Class Cephalopoda:- General morphology, suture line	
	pattern, classification, geological history. Morphology of a Belemnite.	

UNIT III	Phylum Brachiopoda:- General morphology – brachial	(15 Hrs)
	skeleton, classification, geological history. Phylum Echinodermata: Class	
	Echinoidea: General morphology – regular and irregular echinoids,	
	classification – geologicial history. Class Crinoidea:- General morphology	
	and geological history. Class Blastoidea: General morphology and	
	geological history. Phylum protozoa – Order: Foraminifera: General	
	morphology – dimorphism – classification and stratigraphic importance.	
	A brief account of the following plant fossils:- Glossopteris,	
	Gangamopteris, Ptilophyllum, Calamites, Lepididendron and Sigillaria.	
UNIT IV	Definition of crystal – morphological characters of crystal	(15 Hrs)
	- facesforms - edges solid angles - Interfacial angle. Contact	
	Goniometer and its uses. Symmetry elements - crystallographic axes -	
	crystal notation - parameter system of Weiss and Miller indices - axial	
	ratio - laws of crystallography - the law of constancy of symmetry, the	
	law of constancy of interfacial angles and the law of rational indices.	
	Study of the symmetry elements and forms of the Normal, pyritohedral,	
	tetrahedral and plagiohedral classes of cubic system. Study of symmetry	
	elements and forms of Normal, Hemimorphic, Sphenoidal and	
	Trapezphedral classes of Tetragonal system.	
UNIT V	Study of the symmetry elements and forms of Normal,	(15 Hrs)
	Hemimorphic Trapezohedral, Rhombohedral, Rhombohedral	
	Hemimorphic classes of Hexagonal system. Study of the symmetry	
	elements and forms of the Normal, Hemimorphic and Sphenoidal classes	
	of Orthorhombic system. Study of the symmetry elements and forms of	
	the Normal classes of the Monoclinic and Triclinic systems. Twin crystals	
	- Definitions - simple and repeated (polysynthetic twins), contact and	
	penetration twins: secondary twins.	
UNIT VI	Phylum Arthropoda:- Class – Trilobita – General morphology –	(15 Hrs)
	classification - geological history and stratigraphic importance. Study of	
	symmetry elements and forms of Normal, Hemimorphic, Sphenoidal and	
	Trapezphedral classes of Tetragonal system.	

- 1. Dana, F.S.(1955) : A text book of mineralogy Asia Publishing House Willey.
- 2. Jain, P.C., and Anatharaman, M.S. An Introduction to Palaeontology, Vishal Publications

Reference books:

- 1. Raup, D.M. and Stanely, M.S : Principles of Palaeontology, CBS Publishers.
- 2. Moore, R.C., Laliker, C.G.& Fishcher, A.G: Invertebrate Fossils, Harper brothers.
- 3. Shrock. R.R and Twenhofel, W.H 1953: Principles of invertebrate Palaeontology, Amold publication.
- 4. Phillips, W.R. Optical Minerlogy, Griffen, D.T. 1986.
- 5. Walhstrom, E.F.1960 Optical crystallography John wiley.

Course outcomes:

On completion of the course students should be able to

CO 1: Demonstrate their understanding of how life has evolved through geologic time.

CO 2: Identify and explain the morphological characters of fossils.

- CO 3: Explain the evolutionary trends of fossils.
- CO 4: Understand the concepts origin of crystal.
- CO 5: Know the forms and faces of crystals.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

СО		РО				PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	М	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S
CO 3	S	S	S	S	S	S	М	S	S	S
CO 4	S	S	S	S	S	S	М	S	S	S
CO 5	S	S	S	S	S	S	М	S	S	S

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-IV / SBE - I	Disaster Management	Course Code: SBE - I
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating	
	K6 - Creating	
Course Objectives	 To study the disaster of factors and significance To study the earthquakes characteristics and pre casers. 	
U	 To learn the floods causal phenomena and characters. 	
	• Describe the cyclones characteristics, forecasting and warning systems.	
UNIT	To study the causes of land slide and snow avalanche. CONTENT	HOURS
	DISASTER	(5 Hrs)
	Meaning Factors and significance causes and effects of	(3 1115)
	disaster Disasters: A global view Disaster profile of India – Regional and	
	uisaster, Disasters. A giobar view. Disaster prome or india – Regionar and	
UNITI	EARTHQUAKES	(5 Hrs)
	General characteristics, Pre-Casers: Instrumental and non-	
	instrumental vulnerability, impact and effects, Nature of damage,	
	earthquakes prone areas in India.	
UNIT III	FLOODS	(5 Hrs)
	Causal phenomena and characters of floods, vulnerability,	
	predictability, forecasting and warning, preparedness mitigation with	
	special reference to flood plain zoning adverse effects of flood.	
UNIT IV	CYCLONES	(5 Hrs)
	Characteristics, forecasting and warning systems, preparedness,	
	such reduction measures, effects, cyclones prone areas in India.	
UNIT V	LAND SLIDE AND SNOW AVALANCHES	(5 Hrs)
	Characteristics and causes of land slide and snow avalanche.	
	Characteristics and causes, vulnerability, Risk reduction measures,	
	preparedness, effects and impacts.	

- 1. Aravind Kumar Anmal, 2006. Disaster Management Recent Approaches
- 2. Ghorh. G.K Disaster Managemen. 2006. A.P.H Publishy Corporation.
- 3. Singh, 2006. Disaster Management. Rawat Publication.

Reference Books:

- 1. Narayan B., 2006. Disaster Management. A.P.H Publishy Corporation.
- 2. Nikij Kumar., 2006. Disaster Management. Alfa Publication.

Course Outcomes

On completion of the course students should be able to

CO 1: Understand the disaster regional and seasonal a global view

- CO 2: Understand the geological origin of especially important one natural hazards earthquake
- CO 3: Know the preparedness mitigation with special reference to flood plain zoning adverse effects.
- CO 4: Determine the cyclones characteristics such as reduction measures and effects.
- CO 5: Understand the nature of the landslide.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

00	РО				PSO					
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	М	М	S	S	S	S	М
CO 2	S	S	S	М	М	S	S	S	S	М
CO 3	S	S	М	М	М	S	S	S	S	М
CO 4	S	S	S	М	М	S	S	S	S	М
CO 5	S	S	S	М	S	S	S	S	S	М

- S Strongly Correlated
- M Moderately Correlated
- W Weakly Correlated
- N No Correlation

Semester-IV / Non	Geological of Tamilnadu	Non Major Elective: NME - II
Major Elective - II		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level Course Objectives	 K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating To study the geomorphological and Ghats of Tamilnadu. To study the structures of shear zones. Understanding the components of Proterozoic formations. To estimate Gondwana formations of Tamilnadu. The study of recent and sub recent formations of marine coastal dep 	osits.					
UNIT	CONTENT	HOURS					
UNIT I	GEOMORPHOLOGY AND PHYSIOGRAPHY OF	(5 Hrs)					
UNIT II	TAMILNADUGeological Time scale of India. General Geologicalsetting of Tamilnadu. Geomorphology: Physiography – Western andEastern Ghats of Tamil Nadu and their structural aspects.STRUCTURES, TECTONICS AND SHEAR ZONES OF	(5 Hrs)					
	TAMILNADU						
	Structure and Tectonics of TamilNadu. Shear zones of Tamilnadu – Palghat – Cauvery Moyar – Bhayani Salem-Attur and						
	Gangavalli- Achankovil shear Zones.						
UNIT III	ARCHEAN SYSTEMS AND PROTEROZOIC FORMATIONS	(5 Hrs)					
	OF TAMILNADU						
	Archean systems - Sathiyamangalam Greenstone Belt -						
	Penninsular gneiss, Charnockite, Khondalites. Proterozoic formations						
	- Charnockite-Migmatite and Granite.						
UNIT IV	FORMATIONS OF TAMILNADU	(5 Hrs)					
	Gondwana formations – Sivaganga formations,						
	marine formations.						

UNIT V	MINERAL WEALTH OF TAMILNADU	(5 Hrs)
	Tertiary formations – Cuddalore formations – Neyveli	
	Lignite formation, Kariaikal formations, Panamparai Sandstone -	
	Recent Sub-recent fluvio-marine coastal deposits –	
	Manavalakuruchi, Thoothukudi. Mineral wealth of Tamilnadu.	

- 1. Subramaniam K. S and Selvam T. A., 2001. Geology of Tamilnadu and Pondicherry. Geological society of India, Bangalore 192pp.
- 2. Krishnan M. S., 1968. Geology of India and Burma, Higginbothams
- 3. Wadia D.N., 1953. Geology Of India. Macmillian and Co.

Reference Book:

1. Kumar 1985. Fundamentals of Historical Geology and Stratigraphy of India.

Course Outcomes:

On completion of the course students should be able to

CO 1: Understanding the general geological settings of Tamilnadu and their structural aspects.

CO 2: Gain a better understanding of the structures and tectonics of shear zones of TamilNadu.

CO 3: Understanding the Archean systems and Proterozoic formations of charnockite, migmatite and granite.

CO 4: Articulate the relationship between Gondwana and Terani formations

CO 5: Understand the mineral wealth of Tamilnadu.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

CO	РО				PSO					
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	S	S	S	S	S	S	S	М
CO 2	М	S	S	S	S	S	S	S	S	М
CO 3	М	S	S	S	S	S	S	S	S	М
CO 4	М	S	S	S	S	S	S	S	S	М
CO 5	М	S	S	S	S	S	S	S	S	М

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / Course Code V	Stratigraphy	Course Code: BGG
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating						
	K6 - Creating						
Course	• To learn about the geological time scale, principles of stratigrap	hic and the					
Objectives	description of strata and their relationship to tectonics, climate, fossils along with						
	their distribution in different parts of India from Precambrian to recent.						
	• To study the geological and applications of stratigraphy.						
	• To realize the different geological epoch formation.						
	• To collect stratigraphic data in the field.						
	• To synthesize geological and biological information to interpret local a	and regional					
	geologic history.						
UNIT	CONTENT	HOURS					
UNIT I	PRINCIPLES OF STRATIGRAPHY	(15 Hrs)					
	Law of order of superposition. Law of uniformitarianism and						
	law of faunal succession. Correlation: fossiliferous and unfossiliferous						
	rocks. Standard stratigraphic scale and Indian Geologic Time scale.						
	Imperfections in Geological record. Geological divisions. Stratigraphic						
	classification and Nomenclature. Stratigraphic Units: Lithostratigraphic						
	unit, Biostratigraphic unit, Geochronologic Unit. Homotaxis.						
	Physiographic divisions of India: Peninsular India, Indogangetic alluvial						
	plains, Extra Peninsular India.						
UNIT II	PRECAMBRIAN STRATIGRAPHY	(15 Hrs)					
	Archaeans of Dharwar Province, Archaeans of Eastern Ghat -						
	The Sausar and Sakoli Group, Archaeans of Singhbhum – Iron Ore Group						
	and Gangpur Group. Archaeans of Tamilnadu, Mineral Wealth of						
	Archaeans of India, The Eparchaean Unconformity, Stratigraphy and						
	Mineral Wealth of Cuddapahs, Stratigraphy and Mineral Wealth of						
	Vindhyans, Kurnool group, Life during Precambrian.						

UNIT III	PALEOZOIC STRATIGRAPHY	(15 Hrs)						
	Distribution of Paleozoic rocks in India, Cambrian of Salt							
	Range, Age of Saline Series, Upper Carboniferous and Permian rocks of							
	Salt Range, Paleozoic rocks of Kashmir Valley, Paleozoic rocks of Spiti							
	Valley, Paleozoic rocks of Peninsular India.							
UNIT IV	MESOZOIC STRATIGRAPHY	(15 Hrs)						
	The Depositional Environment – distribution – life –							
	classification and economic importance of Gondwana formations of							
	India. Coastal Gondwana of India, Gondwana formations of Tamilnadu.							
	Triassic of Spiti – The Lilang System, Jurassic of Kutch, Cretaceous of							
	Tiruchirapalli – Pondicherry – Bagh Beds, Deccan traps: distribution,							
	structure, Lameta beds - infratrapean and intertrapean beds, age of the							
	Deccan traps.							
UNIT V	CENOZOIC STRATIGRAPHY							
	Comprehensive account of the geological events took place							
	during Cenozoic era in India, rise of Himalayas, stratigraphy of Siwalik							
	Super Group, fauna and flora of Siwaliks, Tertiary rocks of Assam,							
	Karewa formation, Tertiary rocks of Tamilnadu, Tertiary rocks of Kerala,							
	Pleistocene Glaciation - Mineral wealth of Tertiary rocks of India.							
UNIT VI	Homotaxis. Physiographic divisions of India: Peninsular India,	(15 Hrs)						
	Indogangetic alluvial plains, Extra Peninsular India – Coastal Gondwana							
	of India, Gondwana formations of Tamilnadu. Triassic of Spiti							

- 1. Krishnan M.S. (2003) Geology of India and Burma, 6th Edition, CBS.
- 2. Wadia D.N. (1953) Geology of India, TATA McGraw Hill.
- Ravindrakumar K.R. Stratigraphy of India. Lemon R.Y (1990) Principles of Stratigraphy, Merrill Publishing Co.

Reference Books:

- 1. Pascoe, E.H. (1968) A manual of the Geology India and Burma, Govt of India Publications.
- 2. Gregory, J.W. and Barret B.H General stratigraphy mathuen.

Course Outcome

On completion of the course students should be able to

CO 1: It focus specifically on settings and time periods that the students will encounter on our field trips, emphasizing the combined use of sedimentological characteristics and fossil content

CO 2: Student would understand the Indian Stratigraphy and its age related problems. CO 3: Utilizes both forward reasoning and inverse reasoning to construct one or more hypotheses for the paleogeographic and environmental histories that produced a series of strata.

CO 4: The course then adds larger geological principles to the foundation stratigraphy, effects of sedimentary processes and sedimentation rates on interpretation of evolution in the fossil record. CO 5: Student would understand world physiographic divisions and rock formation.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

CO	РО				PSO					
co	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	М
CO 2	S	S	S	S	S	S	S	S	S	М
CO 3	S	S	S	S	S	S	S	S	S	М
CO 4	S	S	S	S	S	S	S	S	S	М
CO 5	S	S	S	S	S	S	S	S	S	М

- **S** Strongly Correlated
- M Moderately Correlated
- W Weakly Correlated
- N No Correlation

Semester-V / Course Code VI	Mineralogy	Course Code: BGH
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1 -Recalling K2 -Understanding	
Level	K3 -Applying	
	K4 - Analyzing K5 - Evaluating	
	K6 - Creating	
Course	• The first unit deals with the introduction to the rock forming	minerals and
Objectives	other concepts related to mineralogy.	
	• The second unit deals with the physical, chemical and optical	properties of
	common rock forming minerals.	
	• Recognize that minerals are chemical compounds made up of	atoms linked
	together by a variety of chemical bond types.	
	• Systematic mineralogy of common rock forming minerals.	
UNIT	CONTENT	HOURS
UNIT I	DESCRIPTIVE MINERALOGY	(15 Hrs)
	Definition of Mineral and Mineraloid – Scope and aim	
	of Mineralogy. Chemical elements and periodic Table - Bonding of	
	atoms - Metallic, Co-valent, Ionic and Van der Walls Bonding in	
	Minerals, Structure and classification of silicates. Isomorphism,	
	Polymorphism and Pseudomorphism in minerals. Physical properties of	
	minerals depending upon cohesion and elasticity, specific gravity, light,	
	heat, electricity, magnetism and the senses.	
UNIT II	Mineralogy, Structure, Chemistry, Optical and Physical	(15 Hrs)
	properties, modes of occurrences and industrial uses of the following	
	groups of minerals: Polymorph and varieties of Quartz – Alkali and	
	Plagioclase group of Feldspars – Nepheline and Sodalite group of	
	Feldspathoides and Zeolites.	
UNIT III	Mineralogy, Structure, Chemistry, Optical and Physical	(15 Hrs)
	properties, Modes of occurrences and industrial uses of the following	
	groups of minerals: Pyroxenes, Amphiboles, Micas, Olivine and Garnet.	

UNIT IV	OPTICAL MINERALOGY	(15 Hrs)
	Nature of light – Ordinary and polarized light – Refraction	
	and reflection. Refractive index, Critical angle and Total internal	
	reflection. Double refraction - Plane polarization by Reflection,	
	Brewster's law – Plane polarization by Refraction, Nicol Prism – Plane	
	polarization by absorption, Polaroid. Petrological microscope and its	
	parts - Optical accessories, their construction and uses - Quartz wedge	
	(Determination of order of Interference Colour) - Gypsum plate and	
	Mica plate (Determination of Fast and Slow vibration directions), and	
	Bereck Compensator (Determination of Birefringence)	
UNIT V	Optical classification of minerals. Optical properties of	(15 Hrs)
	isotropic and anisotropic minerals observed under parallel and crossed	
	Nicols. Differences between Isotropic and anisotropic minerals.	
	Definition of extinction, Types of extinction, Extinction angles and their	
	determination, and uses – Characters of Uniaxial and biaxial minerals –	
	Optics axis and optic axial angle – Acute and Obtuse Bisectrix – Optic	
	sign of Uniaxial and Biaxial minerals – Uniaxial and Biaxial Indicatrix	
	– Sign of elongation – Optical anomalies.	
UNIT VI	Double refraction - Plane polarization by Reflection, Brewster's law -	(15 Hrs)
	Physical properties of minerals depending upon cohesion and elasticity,	
	specific gravity, light, heat, electricity, magnetism and the senses	

- 1. Dana, F.S. 1955 A text book of mineralogy Asia publishing House, Wiley
- 2. Read, H.H- 1974 Rutley's elements of mineralogy Thomas murby & Co
- 3. Mason., B and Berry, L.G Elements of Mineralogy W.H. Freeman & Co
- 4. Kerr.P.F: Optical Mineralogy

Reference Books:

- 1. Deer. W.A., Howoe. R.A and Zuessman, J. -1966. An introduction of the Rock forming minerals. Longmans.
- 2. Berry, Mason, Dietrich, 2000 Mineralogy, CBS Publication
- 3. Cornelis Klen and Cornelius S. Hurlbut, 1985 Manual of Minerology, John wiley & Sons
- 4. Phillips, W.R. Optical Minerlogy, Griffen, D.T. 1986.
- 5. Winchel, A.n. 1968 Elements of optical mineralogy, part 1 & 2 wiley Eastern

Course Outcomes

On completion of the course students should be able to

CO 1: Student thoroughly understands the various crystal structures and megascopic and optical characters of various minerals.

CO 2: Understand the basic crystal-chemical properties of minerals and how variability in these properties relates to physical and optical characteristics as well as the formation and stability of minerals in igneous, metamorphic, and sedimentary environments.

CO 3: Recognize and quantify the physical and optical properties of minerals.

CO 4: Microscopic thin section study and identity characterize common rock-forming minerals.

CO 5: Extract information about the conditions of formation and subsequent history of a mineral from its properties and its presence in a rock.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	М
CO 2	S	S	S	S	S	S	S	S	S	М
CO 3	S	S	S	S	S	S	S	S	S	М
CO 4	S	S	S	S	S	S	S	S	S	М
CO 5	S	S	S	S	S	S	S	S	S	М

S – Strongly Correlated

M – Moderately Correlated

W-Weakly Correlated

Semester-V / Core Practical: CP – III	Mineralogy and Applied Geology	Course Code: BGIY
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks: 40	External Marks: 60	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating	
Course	• To learn the megascopic and Microscopic identification of Quart	z, Feldspar,
Objectives	Feldspathoid, Pyroxene, Amphibole groups.	
	• Describe the characteristics physical properties that we use	to identify
	minerals, including crystal shape, color, luster and hardness.	
	• To discuss the cite examples of the important properties and chara	cteristics of
	the silicate nonsilicate rock forming minerals.	
	• To interpret the hydrogeological data.	
	• To solve the calculation of ore reserves.	
UNIT	CONTENT	HOURS
	MEGASCOPIC MINERALOGY	(12 Hrs)
	Megascopic identification and description of the	
	following: Quartz, Rosy quartz, Amethyst, Chalcedony, Agate, Flint,	
	Jasper, Chert, Opal, Orthoclase, Microcline, Albite, Oligoclase,	
	Labradorite, Nepheline, Leucite, Sodalite, Enstatite, Bronzite,	
	Hypersthene, Diopside, Augite, Spodumene, Acmite, Rhodonite,	
	Wolastonite, Anthopillite, Tremolite, Actinolite, Hornblende,	
	Glaucophane, Olivine, Serpentine, Muscovite, Biotite, Vermiculite,	
	Chlorite, Epidote, Garnet, Olivine, Natrolite, Stilbite, Apophyllite, Talc,	
	Steatite, Andalusite, Kyanite, Sillimanite, Staurolite, Cordierite, Apatite,	
	Beryl, Topaz, Calcite, Dolomite, Tourmaline, Zircon, Fluorite.	
	MICROSCOPIC MINERALOGY	(12 Hrs)
	Microscopic identification and Description of the	
	following:- Quartz, Orthoclase, Microcline, Albite, Oligoclase,	
	Labradorite, Nepheline, Leucite, Enstatite, Hypersthene, Glaucophane,	
	Biotite, Muscovite, Olivine, Epidote, Garnet, Apatite, Zircon, Sphene,	

Tourmaline, Calcite, Andalusite, Kyanite, Sillimanite, Staurolite, and					
Cordierite.					
APPLIED GEOLOGY	(12 Hrs)				
Interpretation of maps - Calculation of ore reserves -					
Included area method. Simple problems relating to interpretation of					
hydrogeological data.					
BLOW PIPE	(12 Hrs)				
Identification of the following mineral powders by simple					
blow pipe tests:- Apatite, Barite, Calcite, Celestite, Cerusite, chalcopyrite,					
Galena, Gypsum, Chromite, Haematite, Magnesite, Magnetite,					
Psilomelane, Pyrolusite, Siderite, Sphalerite, Strontianite, Witherite,					
Stibnite, Ilmenite and Worlframite.					

Course Outcomes

On completion of the course students should be able to

CO 1: Students can able to describe several common mineral crystal habits.

CO 2: Students will be trained in how to investigate the nature of things through observation and using their senses.

CO 3: Compare samples of various kinds of rock, and identify similarities and differences

CO 4: Describe some common uses of rocks and minerals

CO 5: Student thoroughly understands the various crystal structures and megascopic and optical characters of various minerals.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	М	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S
CO 3	S	S	S	S	S	S	М	S	S	S
CO 4	S	S	S	S	S	S	М	S	S	S
CO 5	S	S	S	S	S	S	М	S	S	S

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / MBE - I	MARINE GEOLOGY	Major Based Elective: MBE – I
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating	
Course	• To study the history of marine geology and sampling techniques.	
Objectives	• To understand the waves, tides, currents and bottom of the sea.	
	• To study the ocean currents tsunamis causes, generation and effects.	
	• To study the beach minerals and instruments applications in sea.	
	• It deals in detail about the law of the sea, marine deposits.	
UNIT	CONTENT	HOURS
UNIT I	HISTORY OF MARINE GEOLOGY AND SAMPLING	(15 Hrs)
	TECHNIQUES	
	History of Marine Geology. Principles and application of	
	Echo sounder, Side scan sonar, Position fixing at Sea. Bottom sediment	
	samplers.	
UNIT II	WAVES AND TIDES	(15 Hrs)
	Waves: Definition, Parts of waves, Types of waves,	
	Classification of waves and wave interactions with the shore. Tides:	
	Definition, Classification and types.	
UNIT III	OCEAN CURRENTS TSUNAMIS	(15 Hrs)
	Definition, causes, generation, propagation and effects.	
	Ocean Currents: Definition and causes. Littoral processes.	
UNIT IV	OCEAN FLOOR AND COASTLINE CLASSIFICATION	(15 Hrs)
	Geomorphology of the ocean floor – Sea floor spreading –	
	Coastline classification – Beach materials.	
UNIT V	MARINE DEPOSITS AND COASTAL ZONE REGULATION	(15 Hrs)
	Eustatic Sea level changes, Marine deposits, Laws of the sea	
	and Coastal zone regulation.	

- 1. Kuenen, Ph.H., Marine Geology. John Wiley and Sons, 1950
- 2. King, C.A.M. Beaches and coasts, Edward Arnold, London 1959.
- King, C.A.M. Introduction to marine Geology and Geomorphology. Edward Arnold, London, 1975.
- 4. Manimaran G., 2007. Indian Ocean Tsunami and Related events. Renuga publications. Tirunelveli pp. 72.

Reference Books:

- 1. Radhakrishnan V., 1996. General geology V.V.P Publishers, Tuticorin.
- Siddhartha K., 2002. Oceanography: A Brief Introduction, Kisalaya publications Pvt. Ltd, pp 347.
- 3. Shepard, F.P., 1978. Geological Oceanography, Heinmann, London.
- 4. Freeman W.H and Sanfrancis Co., 1969. The Ocean. A Scentific American book and company.

Course Outcomes

On completion of the course students should be able to

CO 1: Gain a better understanding of the principles and application of echo sounder, side scan sonar relationship.

CO 2: Determining the waves and tides.

CO 3: Know the sources of ocean currents causes and littoral processes

CO 4: Know the weathering process of geomorphology of the ocean floor.

CO 5: Articulate the relationship between marine deposits and coastal zone regulation.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	М	М	S	S	S	М	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	М	S	М	S	S	S	S	S	S	S
CO 4	М	S	S	S	S	S	S	М	S	S
CO 5	М	S	S	М	S	S	S	S	S	S

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / Major Based Elective - II	Aerial Photography, Cartography and GPS	Major Based Elective: MBE – II
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating	
Course Objectives	 To gain knowledge in application of Geology in engineering such as construction of dams, tunnels, and bridges and in Hydr lineament, drainage pattern, surface water bodies etc. To study the aerial photography based on camera axis. To study the parts of simple camera distortions and aberrations Understanding about the photo mosaics and Analog digital techn. To know about the application of remote sensing and photog interpretation of physiography, lithology and structures. 	practices ogeology, iques. eology in the
UNIT	CONTENT	HOURS
UNIT I	INTRODUCTION TO CARTOGRAPHY	(15 Hrs)
	Definitions, terms, concepts, types, history, applications,	
	conventional cartography v/s digital cartography. Map: Types of map,	
	map 26 scale, classes of maps. Map projection: fundamentals and	
	types; Base Maps & Thematic Maps; Map Legend, Symbols & Border	
	Information; label placement.	
UNIT II	AERIAL PHOTOGRAPHY	(15 Hrs)
	History – Types Based On Camera Axis, Altitude, Film.	
	Lens and angle of Coverage. Scale of Photographs: Definition -	
	Derivation – Determination of Scale in Vertical Photo over Flat and	
	Variable Terrain, Average Photo Scale, Scale in Tilted Photographs -	
	Scale Distortions due to Lens, Flying height, relief, tilt, pitch, yaw, roll.	
UNIT III	CAMERA SYSTEM	(15 Hrs)
	Parts of Simple Camera – Aerial Cameras – Camera	
	Calibration Lens System – Distortions and Aberrations-Spectral	
	Sensitivity of Aerial Cameras-Films Photographic Resolution -	

	Radiometric Characters of Aerial Photographs. Stereo models:	
	Monoscopic Observation – Stereoscopy – Psuedoscopy – Base Height	
	Ratio Stereo model Observation – Height Measurement using	
	Monoscopic and Stereoscopic Methods.	
UNIT IV	PHOTO MOSAICS	(15 Hrs)
	Photo Indexing - Photo Mosaicing - Uncontrolled, Semi	
	Controlled and Controlled – Ortho photography, Analog digital	
	techniques, Flight Planning, Concepts of Map Projection Stereoscopic	
	Plotting Instruments and Map Making: Stereo Plotters, Map	
	Compilation Stereo Plotters – Automated Stereo Plotting instruments –	
	Principles and Utility.	
UNIT V	INTRODUCTION TO GPS	(15 Hrs)
	Definition, concept, GPS working principle, history and	
	timeline, overview. Technical Description and GPS Observables:	
	System Segmentation Space segment; control segment, user segment -	
	types of receivers; GPS satellite signals, GPS data, position and time	
	types of receivers; GPS satellite signals, GPS data, position and time from GPS, code phase tracking, GPS positioning types – absolute	
	types of receivers; GPS satellite signals, GPS data, position and time from GPS, code phase tracking, GPS positioning types – absolute positioning, differential positioning; Factors that affect GPS – number	
	types of receivers; GPS satellite signals, GPS data, position and time from GPS, code phase tracking, GPS positioning types – absolute positioning, differential positioning; Factors that affect GPS – number of satellites, multipath, ionosphere, troposphere, satellite geometry,	
	types of receivers; GPS satellite signals, GPS data, position and time from GPS, code phase tracking, GPS positioning types – absolute positioning, differential positioning; Factors that affect GPS – number of satellites, multipath, ionosphere, troposphere, satellite geometry, satellite health, signal strength, distance from the reference receiver,	

- 1. Robbinson, A.H. [1983], Elements of Cartography, John Wiley and Sons, New York.
- 2. Misra, R.P. and Ramesh, A. Fundamentals of Cartography, Prasaranga, Manasagangotri, Mysore,
- 3. Sarkar, A.K. Practical Geography A Systmetic Approach, Orient Longman, Calcutta.
- 4. Singh, R.L. and Dutt, D.K. [1979]. Elements of Practical Geography, Kalyani Pub., New Delhi.

Reference Books:

- 1. Khan, Z.A, [1998]. Text Book of Practical Geography Concept, New Delhi.
- 2. Monkhouse, F.J. and Wilkinson, K.H.R (1994). Maps and Diagrams. Metheum, London. 27
- 3. Streets, J.A. [1994]. Map Projections University of London Press.
- 4. Pandey, S.N. [1957]. Principles of Application of Photogeology, Wiley Eastern New Delhi.
- 5. Alfred Leick 2007. GPS satellite surveying: John Wiley & Sons, New York.

Course Outcomes

On completion of the course students should be able to

CO 1: Students will be able to recognize explain the basic level fundamental cartography of map projection types.

CO 2: Student would understand the aerial photography history based on camera axis.

CO 3: Students will be able to recognize and explain basic camera system aerial cameras, films,

photographic resolution and radiometric characters measurement.

CO 4: Students will be able to discuss the photo mosaics.

CO 5: Student would understand the technical description and GPS observables system.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

CO	РО					PSO				
co	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	S	М	S	S	М	S	S	М
CO 2	М	S	S	М	S	S	М	S	S	М
CO 3	М	S	S	М	S	S	М	S	S	М
CO 4	М	S	S	М	S	S	М	S	S	М
CO 5	М	S	S	М	S	S	М	S	S	М

- **S** Strongly Correlated
- M Moderately Correlated
- W Weakly Correlated
- N No Correlation

Semester-V / Skill Based Elective - II	Basic Hydrology	Skill Based Elective: SBE – II
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying	
	K4 - Analyzing K5 - Evaluating K6 - Creating	
Course	• To study the origin of water resources.	
Objectives	• To study the various components of hydrological cycle.	
	• Understanding the groundwater occurrence and movement of	aquifers.
	• To study the process and its features of watershed management	nt.
	• To learn about the rain water harvesting method.	
UNIT	CONTENT	HOURS
UNIT I	ORIGIN OF WATER	(5 Hrs)
	Origin of Water - Water resources - Categorization of	
	water resources – Surface water resources from Dams and Lakes.	
UNIT II	HYDROLOGIC CYCLE	(5 Hrs)
	Hydrologic cycle - Various components of hydrological	
	cycle – Precipitation, Run-off, Infiltration, Evaporation and	
	transportation – Rain gauges and their distribution.	
UNIT III	AQUIFERS	(5 Hrs)
	Groundwater occurrence and movement - Aquifers -	
	Definition and types - Hydrogeological Properties of rocks .Basic	
	Principles of groundwater exploration.	
UNIT IV	PROCESS AND ITS FEATURES OF WATER	(5 Hrs)
	Running water – source – weathering, erosion,	
	transportation and deposition - Process and its features - Water	
	Shed Management.	
UNIT V	RAINWATER HARVESTING	(5 Hrs)
	Rainwater harvesting – Definition, method and their	
	importance.	

- 1. Alley. W.M. 1993. Regional groundwater quality VNR New York.
- 2. Arul P. 2000 A text book of Ground water, 1^{st} Edition, 105 122
- 3. Bouwer, H., 1978, Groundwater Hydrology, McGraw Hill Book Co., NY

Reference Books:

- 1. Davies, S.N., & Dewilest, R.J.M., 1966, Hydrogeology, John Wiley & Sons Inc
- 2. Fetter. C.W. 1990. Applied Hydrology. Merill Publishing.
- 3. Karanth. K.R. 1987. Groundwater assessments and management Tata Mc-graw Hall
- 4. H. M. Raghunath 2007 Ground Water, New Age International, 520p.

Course Outcomes:

On completion of the course student should be able to

CO 1: Know the origin of water resources categorization.

CO 2: Understand the components of hydrologic cycle.

CO 3: Understand the quality of groundwater.

CO 4: Student would understand the source of water weathering, erosion, transportation and

deposition of watershed management.

CO 5: Understanding the various of rainwater harvesting.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	М	М	S	S	S	S	S	М
CO 2	S	S	М	М	S	S	S	S	S	М
CO 3	S	S	М	М	S	S	S	S	S	М
CO 4	S	S	М	М	S	S	S	S	S	М
CO 5	S	S	М	М	S	S	S	S	S	М

- **S** Strongly Correlated
- **M** Moderately Correlated
- W Weakly Correlated
- N No Correlation

Semester-V / Skill Based Elective - III	Natural Hazards, Remote Sensing and GIS	Skill Based Elective – SBE – III
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1 -Recalling K2 -Understanding							
Level	K3 -Applying							
	K4 - Analyzing K5 - Evaluating							
	K6 - Creating							
Course	• To study the natural hazards and their classification.							
Objectives	• To study the earthquakes types of elastic waves.							
	• Know the landslide driving forces and causes.							
	• To study the remote sensing and it's the applications in geological	l						
	sciences aerial platforms and resolution of satellite data.							
	• To study the earth science of geological information system.							
UNIT	CONTENT	HOURS						
UNIT I	TYPES OF NATURAL HAZARDS AND THEIR	(5 Hrs)						
	CLASSIFICATION							
	Introduction to natural hazards – Types of natural hazards and							
	their classification.							
UNIT II	EARTHQUAKES	(5 Hrs)						
	Earthquakes – Types of elastic waves – Kinds of							
	earthquakes - Seismograms - Richter's and movement scales - Causes,							
	prediction and prevention of earthquakes.							
UNIT III	LANDSLIDES (5 Hrs)							
	Landslides - Classification - Driving forces and causes -							
	Mitigation of landslides.							
UNIT IV	REMOTE SENSING AND ITS APPLICATIONS IN	(5 Hrs)						
	GEOLOGICAL SCIENCES							
	Introduction to remote sensing – Electromagnetic spectrum							
	- Sensors - Aerial platforms - Resolution of satellite data - Visual							
	interpretation of satellite images - Application of satellite remote							
	sensing in geological sciences.							

UNIT V	GEOGRAPHIC INFORMATION SYSTEM (GIS)	(5 Hrs)
	Application of GIS in earth science, Basic principles of	
	geographic information system - Basic geographic concepts - spatial	
	awareness, spatial measurement, spatial location and reference, spatial	
	patterns Map Basics: Nature of maps, map scale, map projections, Grid	
	Systems for mapping. GIS data models: vector and raster data models.	

- 1. Gary L. Prost 2001. Remote Sensing for geologists Guide to Image Interpretation. Grdon and Breach Science Publishers pp.374.
- Michale N. DeMers, 2005. Fundamental of Geographic Information Systems. Wiley India (p) Ltd. pp. 467.
- 3. Kang-Tsung Chang. 2002. Introduction to Geographic Information Systems. McGraw- Hill companies, pp 348.

References Book:

 Ian Heywood, Sarah Cornelius and Steve carver. 2003. An Introduction to Geographic Information Systems, Pearson, pp 295.

Course Outcomes:

On completion of the course students should be able to

CO 1: Gain a better understanding of the geological types of natural hazards important volcanic, tsunami and flood plain.

CO 2: Understand the kinds of earthquake of seismograms Richter's and movement scales.

CO 3: Understand the nature of the landslide.

CO 4: Student would understand the remote sensing visual interpretation of satellite images.

CO 5: Understanding the geological information system basic concepts spatial awareness,

measurement, location and reference patterns map.

CO	РО					PSO				
co	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	М	S	S
CO 2	S	S	S	S	S	S	S	М	S	S
CO 3	S	S	S	S	S	S	S	М	S	S
CO 4	S	S	S	S	S	S	S	М	S	S
CO 5	S	S	S	S	S	S	S	М	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V& VI / Value	Value Added Course	Value Added Course VAC- I
Added Course – I	Field Geology	
Instruction Hours: 30	Credits: 4	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course	• The paper aims to understand the field essentials like understanding a map,
Objectives	thebasic equipment's, traversing and field markings.
UNIT	CONTENT
UNIT I	Previous Literature and Maps, Destruction of Rocks, Physiography,
	Topographic Expressions and Relief, Inliers and Outliers, Soils and Vegetation,
	Requirements for the Field, Some Field Suggestions and Precautions.
UNIT II	Basic equipment, Additional requirements, Supplementary supplies, Special
	requirements, Optional, For mapping on aerial Photographs. Geological Hammers,
	Pocket and Hand Lenses, Hydrochloric Acid, Streak Plate, Pocket Knife, Measuring
	Tapes and Scales, Haversack or Rucksack, Mohs scale of Hardness, Cold Chisel,
	Protractors, Pocket Calculator, Cameras, Care and Upkeep of Instruments.
UNIT III	The Compass and Its Uses, Dip of the Compass Needle, Magnetic Declination,
	Clinometer, Bearing and Reading Directions, Measuring Attitudes, Handling of the
	Compass, Finding Direction without a Compass.
UNIT IV	Base Maps, Scale of Maps, Direction of Relief, Latitudes and Longitudes,
	Map Grids Measurement of the Map Areas, Mounding and Folding of Field Maps,
	Marking on Maps.
UNIT V	The Notebook, Notes, Checklist for Notes, Writing Materials, Field Sketches
	and Drawings, Field Photographs. Trimming of Hand Specimens, Fossil Specimens,
	Mineral Specimens, Samples and Samplings, Numbering and Labelling of Specimens,
	Packing and Storage.

- 1. Davis, G.R. 1984, Structural Geology of Rocks and Region, John Wiley24
- 2. H.W. Fairborn, 1949, Structural petrology of deformed rocks, John Wiley and sons
- 3. John Suppe 1985, Principles of Structural Geology, prentice Hall publications.

Reference Books:

- 1. Price N.J., and Cosgrove, J.W. 1990. Analysis of Geological structures, Cambridge Univ. Press.
- 2. Ramsay, J.G. and Huber, M.I., 1987, Modern structural Geology Vol. I and II Academic press.
- 3. Robert R. Compton, 1962, Manual of field geology, John Wiley and sons.

Course Outcomes

On completion of the course students should be able to

CO 1: Students would be able to understanding the field geology origin of important rocks, minerals,

soils and vegetation inliers and outlier topographically destruction.

CO 2: Students understand the field basic equipment handling and requirements.

CO 3: Understand the compass its uses rock and mineral direction.

CO 4: Understand the student using base map latitude and longitude direction.

CO 5: Gain a better understands the field writing materials, field sketches and drawings.

Semester-VI / Value Added Course - II	Value Added Course Spatial Modelling - Multi Displinary	Value Added Course VAC- II
Instruction Hours: 30	Credits: 4	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating
Course	• Exposes the students to decision making and concepts of spatial decision
Objective	support system.
UNIT	CONTENT
UNIT I	Development – Definition – Classification and Verification of spatial
	models – Spatial System Theory – Temporal modelling and dynamic description of geo
	objects.
UNIT II	Data models – Static models – Dynamic models – Cartographic models –
	Spatio – Temporal models – Network models – Models based on purpose –
	methodology and logic.
UNIT III	Basic statistic and its GIS expression - Spatial dependency - Spatial
	interpolation (IDW, Kringing and Others) – 3D models of relief.
UNIT IV	Linking numeric and geographic patterns – Normalizing maps – Viewing
	scatter plots – clustering mapped data – Investigating map correlation.
UNIT V	Dynamic map pedigree – Toward a human GIS – GIS softwar's changing
	roles – Evolving the GIS mindset – Multimedia mapping – Map display.

1. Carlo Gaetan& Xavier Guyon (auth), Spatial Statisstics and Modelling 2010

Reference Books:

1. Longley P.A, M.F. Goodchild, D.J. Maguire and D.W. Rhind 2005. John Wiley, Chichester Geographic Information System and Science. Second edition 2005

Web Resources:

https://www.pdfdrive.com/spatial-modelling-in-gis-and-r-for-earth-and-environmental-scienced183969339.html

Course Outcomes

On completion of the course students should be able to be

CO 1: Understand the concept architecture and frame work of SM and decision variables.

CO 2: Apply the SDSS in specified areas.

CO 3: Gain knowledge on types of decision modelling.

CO 4: Learn about various ranking, rating and composition methods involved in decision modelling.

Semester-VI / Course Code – VII	Igneous Petrology	Course Code: BGI
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level Course Objectives	 K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating To give a basic understanding of the mechanisms which control the diversity of igneous rocks To emphasis the relationship between tectonic setting and igneous r 	ock suites
	 To study the intrusive and extrusive igneous rocks 	oek suites
	• To study the various classification	
	• To study the magmatic differentiation.	
UNIT	CONTENT	HOURS
UNIT I	Definition of Petrology – Earth zones. Composition and	(18 Hrs)
	constitution of magmas - Primary and Parental Magmas. Forms of	
	Intrusive igneous rocks. Concordant forms – Sill, Laccolith, Lopolith and	
	Phacolith, Discordant forms – Dykes, Cone Sheets, Volcanic neck, Ring	
	dyke, Batholiths, Stocks, Bosses and Psymaliths. Forms of Extrusive	
	igneous rocks: Lava flows, Pyroclastic deposits - Agglomerate, Lapilli,	
	volcanic ash and volcanic froth.	
UNIT II	Structures vesicular and Amygdaloidal structures – block lava	(18 Hrs)
	- Ropy lava - pillow structure - flow structure - sheet joints- mural	
	jointing – columnar jointing – rift and grain. Textures: Definition and	
	description – crystallinity: crystallites and microlites – Devitrification –	
	Granularity – shapes of crystals, mutual relations – Equigranular textures:	
	allotriomorphic hypidimorphic, Panidiomorphic. Inequigranular Textures:	
	porphyritic and Intergrowth texture – Trachytic texture – Intergrowth	
	texture strctures orbicular structure Spherulitic structure – Perlitic	
	fracture. Directive textures, Overgrowth textures, Reaction textures –	
	Micro Structures	

UNIT III	Classification: bases of classification – megascopic	(18 Hrs)
	classification - classification based on colour index - based on the	
	proportion of Alkali to plagioclase feldspars. Based on silica saturation –	
	based on alumina saturation - A short account of CIPW classification,	
	Normative minerals, salic and femic groups - mention of the main	
	divisions, classes, orders, suborders, rangs and subrangs only. Merits and	
	defects of CIPW classification – Tyrrels tabular classification.	
UNIT IV	Texture, Mineralogy, Classification, and Modes of occurrence	(18 Hrs)
	of: Granite, Granodiorite, Syenite, Diorite, Gabbro, their hypabyssal and	
	volcanic equivalents. Petrographic characters, distribution in India and	
	origin of Pegmatites, Lamprophyres, Alkaline rocks, Dunite, Peridotite	
	and Anorthosites.	
UNIT V	Crystallization of Unicomponent magma - Crystallizations	(18 Hrs)
	and petrogenetic significance of Binary magmas: Diopside - Anorthite,	
	Eutectic system, Albite – Anorthite soild – solution system, Forestrite –	
	Silica incongruent melting system and Ternary system (Ab – An – Di).	
	Reaction principle and Bowen's reaction series – Causes for the diversity	
	of Igneous rocks – Magmatic Differentitation: Fractional crystallization,	
	liquid immiscibility, Assimilation - short notes on: Consanguinity,	
	Variation diagrams and petrographic provinces.	
UNIT VI	Merits and defects of CIPW classification - Tyrrels tabular classification	(18 Hrs)
	- Structures vesicular and Amygdaloidal structures - block lava - Ropy	
	lava – pillow structure – Forms of Extrusive igneous rocks: Lava flows,	
	Pyroclastic deposits	

- 1. Tyrrel, G.W. 1978 The principles of petrology Chapman and Hall Ltd., London.
- 2. Bowen, N.L. The Evolution of the Igneous Rocks Dover publication, Inc, New York.
- 3. Barth, FW. 1962 Theoritical petrology Wiley.
- 4. Walstrom, E.E. 1961 Theoritical Igneous petrology, Wiley.
- 5. Turner.F.J and Verhoogen.J –1960.- Igneous and Metamorphic petrology McGraw Hill.
- 6. Hatch, F.H. Wells, A.K. Petrology of Igneous Rocks, Thomas Murby & Wells, M.K. 1949
- 7. Johannesen, A 1962 Descriptive petrography of Igneous Rocks, Vols. I to IV Allied Pacific.

Course Outcomes

On completion of the course students should be able to

CO 1: Student would understand the paragenesis of minerals of the Igneous rocks.

CO 2: This course presents a broad review of igneous rocks, emphasizing their tectonic associations, interrelationships and petrogenesis.

CO 3: After successful completion of this course you will have an integrated understanding of the range, composition and petrogenesis of the major igneous rock groups and will be able to identify them in thin section and deduce their tectonic association and mode of origin.

CO 4: Students will become familiar with the key skills used to aid the interpretation of igneous rocks.

CO5: Students will become major igneous rock groups and will be able to identify megascopic and microscopic studies.

\f •	60	·/I D	4 1	D 0	• • •
Vionning of	t i aurca auteamac	S WITH PRAGEN	mma auteamac/	Programmac N	nacific auteomac
\mathbf{W}		5 WILII I I U21 <i>0</i>		1 1 021 аннисъ 0	DECHIC DUILDINGS

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	S	S	S	S	S	S	S	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

S – Strongly Correlated

M – Moderately Correlated

W-Weakly Correlated

Semester-VI / Course Code – VIII	Sedimentary Petrology and Metamorphic Petrology	Course Code: BGJ
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating	
Course Objectives	 Knowing the basic concepts in the classification of sedimentary rocks. Knowing the processes that erode, transport, and deposit sediments. Observing physical characteristics of sedimentary rocks, especially mineral composition and texture. To become familiar with the petrographic nomenclature of sedimentary rocks. To learn about the occurrence, origin, classification and environs sedimentary rocks. 	rocks. onments of
UNIT	CONTENT	HOURS
UNIT I	Sedimentary process – disintegration & decomposition of rocks –	(18 hrs)
	transportation – deposition – diagenesis. A broad classification of sedimentary	
	rocks into residual mechanical, chemical and organic Groups. Structures of	
	sedimentary rocks. Mechanical, chemical and organic structures. Textures of	
	sedimentary rocks – clastic and non – clastic textures.	
UNIT II	Residual deposits – terra rossa, clay, laterite and bauxite and soils.	(18 hrs)
	Mechanical deposits - rudaceous, arenaceous and argillaceous groups. Heavy	
	minerals in sand and sandstones. A descriptive study of Conglomerate,	
	Breccia, Sandstones and Shales.	
UNIT III	Chemical deposits - siliceous, carbonaceous, ferruginous and salt	(18 hrs)
	deposits. Organic deposits - calcareous, siliceous, phosphatic, ferruginous and	
	carbonaceous deposts. A breief study of Flinit, Chert, Siderite, Gypsum, Rock	
	Salt, Caliche. Guano and Kiesellgher. Descriptive study of different types of	
	calcareous and carbonaceous deposits.	

UNIT IV	Definition of metamorphism – Agents and kinds of metamorphism –	(18 hrs)
	facies, zones and grades of metamorphism - metamorphic structures and	
	textures. Cataclastic metamorphism and its products. Retrograde	
	metamorphism. Thermal metamorphism of Breccia sediments, pure and	
	impure calcareous rocks. A brief study of Breccia, Flaser, Mylonite, Hornfels,	
	Marble, Ophicalcite.	
UNIT V	Dynamorthermal metamorphism of Breccia sediments. Plutonic	(18 hrs)
	metamorphism petrography and origin of charnockites – metamorphic	
	differentiation - pnumatolitic and injection metamorphism - anataxis and	
	palingenesis. Brief study of Slate, Phyllite, Quartzite, Schist. Gneiss,	
	Granulite, Leptynite, Charnockite, Ecologite, Amphibolite, Schorl, Adinole,	
	Lit- Par – Lite – gneiss and Migmatite.	
UNIT VI	Cataclastic metamorphism and its products - Descriptive study of different	(18 Hrs)
	types of calcareous and carbonaceous deposits - Mechanical deposits -	
	rudaceous, arenaceous and argillaceous groups.	

- 1. Tyrrel, G.W Principles of petrology, Asia Publishing House.
- 2. Huang, W.T. -Petrology, MC Graw Hill
- 3. Pettijhon, F.J. –Sedimentary Rocks, Harper & Bros.
- 4. Harker, A. -Petrology for Students, Cambridge,

Reference Books

- 1. Turner, F, J & Verhogen, J Igneous and Metamorphic Petrology, MC Graw Hill.
- 2. Williams, H, Turner, F.j. & Gillibert, C.M. Petrography, Freeman.
- 3. Winkler, A. G.F. Petrogenesis of Metamorphic Rocks, Mc Graw Hill.

Course Outcomes

On completion of the course students should be able to

CO 1: Student would understand the weathering, provenance, depositional environments, climate and tectonics of the sedimentary rocks.

CO 2: Demonstrate proficiency in common practical skills in Sedimentary Geology.

CO 3: Interpret the processes responsible for the deposition of the sediment from the nature of the sediment and sedimentary structures present within the sedimentary rock.

CO 4: Understand the depositional environment of a sedimentary rock package based on recognition of facies associations.

CO5: Student would understand the petrological studies in megascopic and microscopic

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	S	S	S	S	S	S	S	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

- **S** Strongly Correlated
- **M** Moderately Correlated

W-Weakly Correlated

Semester-VI / Course Code – IX	Economic Geology	Course Code: BGK
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating	
Course Objectives	 To study the basic terminology and classification of ore localizatio To study the magmatic processes. Geochemical properties of earth's crust, mantle and core and the for geochemical measurements for the exploration and energy resou To study the physical properties of ore minerals. To study the occurrence and distribution of ore minerals. 	n. fundamentals ırces.
UNIT	CONTENT	HOURS
UNIT I	Historical development of economic Geology. Materials of mineral deposits – ore minerals, gangue minerals, tenor and grade or ores. Classification of mineral deposits. Outline of Lindgren's and Bateman's classification. Controls of ore localization – structural controls, stratigraphic physical and chemical – brief study of metallogenetic epochs and provinces – geologic thermometers.	(18 Hrs)
UNIT II	Magmatic processes. – Mode of formation – Early magmatic processes and deposits, disseminations. Segregations and injections – Late magmatic processes and deposits – Residual liquid segregation and injection – immiscible liquid segregation and injection – sublimation. Contact Metasomatic processes – the process and effects – resulting mineral deposits. Hydrothermal processes – principles – Factors affecting deposition – wall rock alteration – minerals sequence – cavity filling deposits Fissure veins, shear – zone, stock- work, saddle reef, ladder vein, fold cracks, 59 Breccias filling, solution cavities, pore space and vesicular filling – replacement deposits, the process and deposits – criteria of replacement.	(18 Hrs)

UNIT III	Sedimentary processes and cycles - principles involved in	(18 Hrs)
	sedimentation - cycles of Iron and manganese, weathering processes -	
	principles- Residual concentration process and deposits - mechanical	
	concentration principles - evluvial, alluvial, beach and eolian placers -	
	paystreak and bonanza. Oxidation and supergene sulphide enrichment -	
	solution and deposition in the zone of oxidation - secondary sulphide	
	enrichments - Gossans and capping. Metamorphic processes -	
	Formation of Graphite, Asbestos, Talc, Soapstone and Sillimanite group	
	of minerals.	
UNIT IV	Diagnostic physical properties, chemical composition,	(18 Hrs)
	uses, modes of occurrence and distribution in India of the following	
	economic minerals. Graphite, Realgar, Orpiment, Stibinite, Molybdenite,	
	Cinnabar, Anglesite, Barite, Gypsum, Celestite, Corundum, Ochre,	
	Ilmenite, Chromite, Franklinite, Cassiterrite, Magnesite, Cerussite,	
	Halite, Fluorite, Phosphatic Nodule, Monazite, Wollastonite, Colembite,	
	Tantalite, Samarskite, Asbestos, Steatite and Vermiculite. Mineralogy,	
	mode of occurrence, uses and distribution in India of the following	
	precious metals and minerals. Gold deposits - Gem stones. Character,	
	distribution and mode of occurrence of structural and building materials.	
UNIT V	Mineralogy, mode of occurrences, uses and distribution in	(18 Hrs)
	India of the following metalliferous deposits - Iron, Manganese,	
	aluminium, copper, lead, Zinc - chromium. Fossils fuels - coal - uses,	
	classification, constitution, origin and distribution in India. Petroleum -	
	composition, uses, theories of origin, oil traps, and important oil fields of	
	India.	
UNIT VI	Classification of minerals deposits - Hydrothermal processes	(18 Hrs)
	Metamorphic processes – Formation of Graphite – Gold deposits – Gem	
	stones. Character, distribution and mode of occurrence of structural and	
	building materials - Petroleum - composition, uses, theories of origin,	
	oil traps, and important oil fields of India.	

1. Bateman Allan .M. –Economic Mineral Deposits, Asian Publishing House, 2nd Edition 1962.

2. Lindgren W. - Mineral Deposits, MCGraw Hill, 1933.

Reference Books:

- 1. Coggin, B. and Dey, A.K. India's Mineral Wealth, Oup 1955.
- 2. Park, C.F. and Macdiarmid, R.A- Ore deposits, Freeman, 1970
- 3. Krishnaswamy, S. India's Mineral Resources, oxford and IBH.
- 4. Deb.S. Industrial Minerals and Rocis of India, Allied, 1980.
- 5. Gokhale, K.V.G.K. and Rao, T.C- Ore deposits of India, their distribution and processing, Thosmson press, 1978.

Course Outcomes

On completion of the course students should be able to

CO 1: An understanding of the socio-economic drivers for mining and exploration activities.

CO 2: Detailed knowledge and the ability to interpret the strength, of the various genetic models associated with each class of mineralization; with emphasis on the mineralogy, geology and geochemical controls on mineralization of ore deposits.

CO 3: An understanding of the roles of a geologist in the mining and exploration industries.

CO 4: Students able to understand the ore minerals in the field.

CO5: An understanding of the megascopic and microscopic identified minerals.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

СО	PO					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	Μ	S	S	S	S	S	S	S	S	S
CO 2	Μ	S	S	S	S	S	S	S	S	S
CO 3	Μ	S	S	S	S	S	S	S	S	S
CO 4	Μ	S	S	S	S	S	S	S	S	S
CO 5	Μ	S	S	S	S	S	S	S	S	S

- **S** Strongly Correlated
- M Moderately Correlated
- W Weakly Correlated
- N No Correlation

Semester-VI / Core Practical – IV	Petrology and Economic Geology	Course Code: BGY
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks: 40	External Marks: 60	Total Marks: 100

Cognitive	K1 -Recalling								
Level	K2 -Understanding								
	K3 -Applying								
	K4 - Analyzing								
	K5 - Evaluating								
	K6 - Creating								
Course Objectives	• To study the megascopic identification of igneous, sedimentary and metamorphic rocks.								
	• To study the microscopic identification of igneous, sedim metamorphic rocks.	entary and							
	• To study the megascopic identification of ore minerals.								
	• To study the occurrence and distribution of rocks and ore mine	rals.							
	• To study the industrial minerals.								
UNIT	CONTENT	HOURS							
	PETROLOGY:	(18 Hrs)							
	MEGASCOPIC IDENTIFICATION OF THE FOLLOWING ROCKS								
	Granite, Graphic granite, Pegmatite, Aplite, Schorl Rock,								
	Granite Porphyry, Syenite, Syenite porphyry, Diorite, Gabbro, Anorthosite,								
	Dunite, Pyroxenite, Dolerite, Diabase Porphyry, Basalt, Trachyte, Rhyolite,								
	Obsidian, Pumice, Scoria. Conglomerate, Breccia, Sandstone, Arkose,								
	Shale, Limestone, Laterite, Peat, Lignite, Slate, Phyllite, Schists, Gneisses,								
	Quartzite, Marble, Amphibolite, Ecologite, Leptynite, Charnockite,								
	Khondalite, Calc – Granulite and Basic Granulite.								
	MICROSCOPIC IDENTIFICATION AND DESCRIPTION OF THE	(18 Hrs)							
	FOLLOWING ROCKS								
	Mica Granite, Hornblende Granite, Tourmaline Granite, Schorl								
	Rock, Aplite, Graphic Granite, Mica Syenite, Hornblende Syenite,								
	Nepheline Syenite, Diorite, Gabbro, Norite, Dunite, Peridotite, Granite –								
	porphyry. Syenite – porphyry, Diorite – porphyry, dolerite, minette,								
	Vogasite, Anorthosite, Iracnyte, Andesite, basait, phonolite, volcanic								
	Breccia, vitrophyre, conglomerate, Breccia, sandstone, Arkose, shale								
	schiet gernetiferous schiet. Glausophane schiet, Granulite, Charnockite								
	Ecologite Amphibolite Leptynite khondalite Cordierite greiss garnet								
	Sillimanite gneiss Calc Granulite								
	Similarité gréges du de Granante.								
	1								

ECONOMIC GEOLOGY:-	(18 Hrs)								
MEGASCOPIC IDENTIFICATION AND DESCRIPTION,									
INDIAN OCCURRENCES AND USES OF THE									
FOLLOWING ORE AND INDUSTRIAL MINERALS									
Realgar, Orpiment, Stibnite, Molybdenite, Galena, Sphalerite,									
Cinnabar, Covelite, Bornite, Chalcophyrite, Pyrite, Arsenopyrite,									
Marcasite, Barite, Celestite, Gypsum, Cuprite, Zincite, Corundum,									
Hematite, Ilmenite, Magnetite, Chromite, Franklinite, Cassiterite, Rutile,									
Pyrolusite, Psilomelane, Goethite, Limonite, Bauxite, Calcite, Dolomite,									
Magnesite, Siderite, Aragonite, Witherite, Strontionite, Cerussite, Azurite,									
Malachite, Chrysocolla, Columbite, Halite, Fluorite, Phosphatic Nodule,									
Monazite, Graphite, Coal and its varieties.									

Course Outcomes

S

S

S

CO 3

CO 4

CO 5

On completion of the course students should be able to

CO 1: Students able to identify the megascopic minerals in the field.

CO 2: Understand the microscopic thin section of rocks.

CO 3: Students able to identify the ore minerals in the field.

CO 4: Understand the various uses of economic minerals.

CO 5: Students able to identify industrial ore minerals.

СО		PSO								
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	М	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S

S

S

S

S

S

S

S

S

S

Μ

Μ

Μ

S

S

S

S

S

S

S

S

S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

S

S

S

M – Moderately Correlated

S

S

S

- W-Weakly Correlated
- N No Correlation

Semester-VI / Major Based Elective – III	Exploration Geophysics	Major Based Elective MBE – III
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating								
Course	• To study the electrical methods of rocks through ground surface and apparent								
Objectives	 To study the magnetic methods field survey equipment 								
	 Gain familiarity with a gravity method regional and residual anomaly. 								
	• To study the seismic velocities in earths materials.								
	• To aim of the logging methods using the borehole geophysics interpretation.	data processes and							
UNIT	CONTENT	HOURS							
UNIT I	ELECTRICAL METHODS	(15 Hrs)							
	Electrical properties of rocks, Flow of current through ground								
	surface, apparent resistivity, Electrode arrangements (Wenner,								
	Schlumberger method) VES (Vertical Electrical Sounding) – qualitative								
	interpretation and quantitative interpretation of VES curves for								
	groundwater exploration.								
UNIT II	MAGNETIC METHODS	(15 Hrs)							
	Geomagnetic field, Induced magnetism, Remenent								
	magnetism, Susceptibility, Field survey method, Equipment, Data								
	processing, Qualitative and quantitative interpretation of magnetic data.								
UNIT III	GRAVITY METHODS	(15 Hrs)							
	Gravitational force; Gravitational acceleration; Gravitational								
	potential, Earth's gravitational field, Collections; corrections and								
	presentation of Gravity data, Regional and residual anomalies. Induced								
	Polarization Methods: Earth's polarization, IP measures, Time and								
	frequency domain techniques, Field surveys, Equipments, Data								
	acquisition and interpretation.								

UNIT IV	SEISMIC METHODS	(15 Hrs)
	Basic principles, Types of seismic waves and their	
	propagation characteristic, Seismic velocities in Earth's materials,	
	Refraction and reflection seismic methods: Basic principal, field	
	procedure, data acquisition and interpretation, Siesmicstartigraphy,	
	Radiometric Methods: Basic principles, radioactive elements in rocks,	
	Data collection and interpretation.	
UNIT V	LOGGING METHODS	(15 Hrs)
	Borehole geophysics – well logging, electric logging,	
	radioactive logging, induction logging, Sonic logging – Airborne	
	survey, Data acquisition, Equipment, Measurement, Data processing	
	and interpretation.	

- 1. Ramachandra Rao, M.B., Prasaranga, 1975. Outlines of Geophysical Prospecting A manual for geologists by University of Mysore, Mysore.
- 2. Bhimasarikaram V.L.S. 1990. Exploration Geophysics An Outline by, Association of Exploration Geophysicists, Osmania University, Hyderabad,.
- 3. Dobrin, 1984. An introduction to Geophysical Prospecting by, M.B. McGraw Hill, New Delhi.

Reference Books:

- 1. Telford W.M. Geldart L.P., Sheriff, R.E. and Keys D.A. 1976, Applied Geophysics. Oxford and IBH Publishing Co. Pvt., Ltd. New Delhi.
- 2. Parasnis, D.S 1975.Principles of applied Geophysics, Chapman and Hall.

Course Outcomes

On completion of the course students should be able to

CO 1: Understanding the electrical methods Wenner and Schlumberger arrangement of groundwater exploration.

CO 2: Students would understand the magnetic methods using the groundwater qualitative and quantitative data interpretation.

CO 3: Understand the earth's gravitational field, collections, corrections and presentation of gravity data.

CO 4: Students would be able to understand the seismic velocities in earth's materials, refraction and reflection seismic methods.

CO 5: Gain a better understanding of the sonic logging airborne survey, data acquisition, equipment, measurement, data processing and interpretation.

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	М	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S
CO 3	S	S	S	S	S	S	М	S	S	S
CO 4	S	S	S	S	S	S	М	S	S	S
CO 5	S	S	S	S	S	S	М	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W-Weakly Correlated

N – No Correlation

FIELD TRAINING PROGRAMME

As an essential part of the course, students should be taken for a field training programme during an academic year.

First Year

Students should be taken on a local field trip to study the elementary aspects of geomorphology, structural geology, for about a week and submit a report thereon.

Second Year

Study of Palaeontological and Stratigraphically interested areas and collection of fossils. Student should submit a field report along with collections at the time of practical examinations: Duration of visit about 10 days.

Third Year

Visit to geologically interested and mineralized zones of India. Mine visit and collection of minerals and rocks. Duration of visit is 15 days.